Удивительная механика

       

Свинцово-кислотный аккумулятор


В конструкциях автомобильных свинцово-кислотных аккумуляторов ученые постарались как можно больше увеличить поверхность электродов, не нарушая при этом их прочности. Ведь именно от величины поверхности зависит энергоемкость аккумулятора. Сейчас пластины аккумулятора изготовляют в форме свинцовых решеток, покрытых перекисью свинца (положительный электрод) и губчатым свинцом (отрицательный электрод). Электролитом служит 25—35%-ный водный раствор серной кислоты. Заряженный автомобильный аккумулятор имеет напряжение (точнее, электродвижущую силу) на клеммах 2-2,2 В. При разрядке это напряжение падает, и когда оно достигает 1,8 В, разрядку обычно прекращают, иначе решетка из свинца может слишком истончиться в ходе реакции, и пластины, потеряв прочность, рассыплются. Мне очень хотелось узнать, что будет с аккумулятором, если попробовать хотя бы кратковременно получить от него ток большой мощности. Однажды я упросил одного знакомого водителя включить стартер, питаемый, как известно, от аккумулятора, при не включенном двигателе. Двигатель, естественно, не завелся, а секунд через 15—20 стартер начал сбавлять обороты. Еще через некоторое время он вообще остановился. Было полное впечатление, что аккумулятор разрядился и больше из него «выжать» ничего нельзя. Я думал, водитель рассердится, скажет, мол, видишь, к чему привели твои опыты. Но он неторопливо выключил стартер, а потом, спустя пару минут, снова включил его. Стартер заработал! Откуда взялись «силы» у аккумулятора? Не мог же он, как живое существо, «отдохнуть»! В самом деле, поведение аккумулятора и живого организма здесь поразительно похожи. При усталости мышц от интенсивной работы их сила резко снижается, и нужно время, чтобы силы восстановились. Человек сделает гораздо больше, если он будет работать без спешки, неторопливо, с постоянной, но умеренной нагрузкой. Например, если попытаться бегом подняться на 20-й этаж дома, – без остановок это вряд ли получится, потребуется отдых. Да и с остановками усталость будет ощущаться немалая.
А если идти спокойно, то 20 этажей можно преодолеть без особых усилий. Так и в аккумуляторе: при включении его на большую мощность серная кислота, которая находится в порах пластин, быстро израсходуется, в результате реакции она превратится в воду, и выделение тока прекратится. Только через некоторое время, когда серная кислота постепенно вновь заполнит поры, можно опять разряжать аккумулятор. Поэтому разряжают и заряжают аккумуляторы – это касается практически всех видов электрохимических аккумуляторов – обычно с достаточно малой нагрузкой, небольшими токами и продолжительное время – несколько часов. Здесь и кроется один из главнейших недостатков электрохимических аккумуляторов – их малая мощность, приходящаяся на килограмм массы аккумулятора, так называемая удельная мощность, или иначе – плотность мощности. Свинцово-кислотные аккумуляторы весьма экономичны, однако они и капризны, часто портятся, недолговечны. К тому же свинец – сравнительно редкий и дорогой металл, а кислота – опасна в обращении. Естественно, что ученые стали искать новые материалы и новые принципы работы аккумуляторов. Так возник второй основной тип электрохимических аккумуляторов – щелочные аккумуляторы. Создание их тесно связано с именем знаменитого американского ученого и изобретателя Томаса Эдисона. Знаменитый изобретатель «всех времен и народов» Томас Алва Эдисон был моим кумиром. Я очень хотел походить на него стремлением к цели и работоспособностью, правда, не всегда удачно мне это удавалось. В аккумуляторах Эдисона электролитом служит уже не кислота, а щелочь – 20%-ный раствор едкого кали. Пластины изготовлены из стальных решеток с карманами. У положительных пластин карманы заполнены смесью, содержащей окись никеля, а у отрицательных – губчатым кадмием. Корпус щелочного аккумулятора стальной, что придает устройству большую прочность.


Содержание раздела